13.

A) $x^2 + y^2 = 4$

SRIGAYATRI EDUCATIONAL INSTITUTIONS

INDIA

SR MPC Date: 26-07-2020 **JEE MAINS MODEL WT-09 Time: 3 Hours** Max. Marks: 300 M

SECTION - I (SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B),

		ver, out of which ONLY or correct answer, 0 if	_	
		MATH	EMATICS	
<mark>Syll</mark>	abus: 10-07-2020 TO	24-07-2020. Combinati		Exercise
1.	$^{n}C_{r-1} = 330, ^{n}C_{r} = 46$	$C_{r+1}^{n} = 462 \Longrightarrow r = 62$		
	A) 3	B) 4	C) 5	D) 6
2.	A committee of 12 n	nembers is to formed fi	rom 9 women and 8 m	nen. The number of
		n the women are in maj	•	D) 2250
•	A) 2720	B) 2702	C) 2270	D) 2278
3.			n be formed with the v	vertices of a regular polygon
	of m sides. If $T_{m+1} - T_{m+1}$		C) 0	D) 12
4.	A) 3 The number of wex	B) 6 s of dividing 15 books i	C) 9	D) 12 Shooks respectively is
₹.				
	A) $\frac{15!}{2!3!4!8!}$	B) $\frac{13!}{(2!)^2 4!9!}$	C) $\frac{13!}{4!8!}$	D) $15C_3$. 4C_4 . 8C_8
_		(- ')		
5.		2 0 2		d 5 at another table, the tables
		umber of ways in which		
	A) $(4!)^2$	B) ${}^{10}C_5(4!)^2$	C) ${}^{10}C_5(5!)^2$	D) 4!
6.	The number of man	y one functions from A	$A = \{1, 2, 3\}$ to $B = \{a, b\}$	$\{c,c,d\}$ is
	A) 64	B) 24	C) 40	D) 0
7.	The number of posi	tive divisors of 768 is		
	A) 17	B) 18	C) 19	D) 20
8.	_	_ ,		number of ways that you can
		luring the working day		D) 200
9.	A) 220 The number of 5 let	B) 240	C) 260	D) 280 ters of the word SARANAM
9.	is	ter word that can be ro	ormed by using the let	ters of the word SARANAW
	A) 1120	B) 6720	C) 480	D) 720
10.		dratic expressions with	which coefficients dr	awn from the set $\{0,1,2,3\}$ is
	A) 27	B) 36	C) 48	D) 64
11.		,	,	+3y+15=0 and having centre
	on the line $3x + 2y +$,	, o
	A) $x^2 + y^2 + 4x - 2y +$		B) $x^2 + y^2 - 4x + 2$	2y + 1 = 0
	C) $x^2 + y^2 + 4x - 2y - 2x - 2x - 2x - 2x - 2x - 2x - 2$		D) $x^2 + y^2 - 4x + 2$	
12			•	
12.				ntre at $(2, y)$ then (x, y)
	A)(1,4)	B)(4,1)	C)(8,2)	D)(2,8)
13.	The equation of the	circle passing through	(2,0) and $(0,4)$ and h	aving the minimum radius is

B) $x^2 + y^2 - 2x + 4y = 0$

C)
$$x^2 + y^2 - x - 2y = 0$$

D)
$$x^2 + y^2 - 2x - 4y = 0$$

14. If the power of (2,1) with respect to the circle $2x^2 + 2y^2 - 8x - 6y + k = 0$ is positive if

A)
$$0 < k < 12$$

B)
$$-12 < k < 12$$

C)
$$k > 12$$

D)
$$k < 12$$

15. The equation of the circle concentric with the circle $x^2 + y^2 - 6x + 12y + 15 = 0$ and of double its

A)
$$x^2 + y^2 - 6x + 12y - 15 = 0$$

B)
$$x^2 + y^2 - 6x + 12y - 30 = 0$$

C)
$$x^2 + y^2 + x + 6y + 1 = 0$$

D)
$$2x^2 + 2y^2 + x + 3y - 20 = 0$$

The equation of the circle which passes through the origin and makes intercepts of lengths 4 and 8 on the x- and y- axis respectively are

A)
$$x^2 + y^2 \pm 4x \pm 8y = 0$$

B)
$$x^2 + y^2 \pm 2x \pm 4y = 0$$

C)
$$x^2 + y^2 \pm 8x \pm 16y = 0$$

D)
$$x^2 + y^2 \pm x \pm y = 0$$

The condition that the pair of tangents drawn from (g, f) to the 17.

circle $x^2 + y^2 + 2gx + 2fy + c = 0$ may be at right angles is

A)
$$g^2 + f^2 + c = 0$$

A)
$$g^2 + f^2 + c = 0$$
 B) $g^2 + f^2 + 2c = 0$ C) $g^2 + f^2 = c$ D) $g^2 + f^2 = 2c$

C)
$$g^2 + f^2 = c$$

D)
$$g^2 + f^2 = 2c$$

If the length of the tangent from (h,k) to the circle $x^2 + y^2 = 16$ is twice the length of the 18. tangent from the same point to the circle $x^2 + y^2 + 2x + 2y = 0$, then

A)
$$h^2 + k^2 + 4h + 4k + 16 = 0$$

B)
$$h^2 + k^2 + 3h + 3k = 0$$

A)
$$h^2 + k^2 + 4h + 4k + 16 = 0$$

C) $3h^2 + 3k^2 + 8h + 8k + 16 = 0$

D)
$$3h^2 + 3k^2 + 4h + 4k + 16 = 0$$

The point on the circle $x^2 + y^2 - 6x + 4y - 12 = 0$ which is at maximum distance from the point **19.** (-9,7) is

A)
$$(-1,1)$$

B)
$$(7,-5)$$

C)
$$(0,-6)$$

20. The equation of the circle touching the axes at (a,0) and (0,a) is

A)
$$x^2 + y^2 - 2ax - 2ay + a^2 = 0$$

B)
$$x^2 + y^2 + 2ax + 2ay = 0$$

C)
$$x^2 + y^2 - ax - ay = 0$$

D)
$$x^2 + y^2 + ax - ay = 0$$

SECTION-II

(Numerical Value Answer Type)

This section contains 5 questions. The answer to each question is a Numerical values comprising of positive or negative decimal numbers. Marking scheme: +4 for correct answer, 0 in all other cases.

- Find the number of ways in which 5 distinct balls can be distributed in three different boxes in no 21. box remains empty.
- 22. Total number of four digit odd numbers that can be formed using 0, 1, 2, 3, 5, 7 are (with out repetition).
- If the points (0,0), (2,0), (0,4),(1,k) are concyclic then $k^2 4k =$ 23.
- If the line y = 2x + c is a tangent to the circle $x^2 + y^2 = 5$, then a value of c is 24.
- For the circle $ax^2 + y^2 + bx + dy + 2 = 0$ centre is (1, 2) then 2b + 3d =25.

SECTION - I (SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 if not correct.

PHYSICS

A current (I) flows through a uniform wire of diameter (d) when the mean drift velocity is V. The same current will flow through a wire of diameter d/2 made of the same material if the

Syllabus: CURRENT ELECTRICITY (10-07-2020 TO 24-07-2020).

	mean drift velocity of	the electron is		
	A) V/4	B) V/2	C) 4V	D) 2V
27.	A steady current is pa current density in the		conductor of non-	uniform cross-section. The
	-		B) directly propo	ortional to area of cross-section
	, <u>*</u>	nal to area of cross-section	, , ,	
	D) inversely proportion	nal to the square root of	area of cross-section	1
28.	•	-		ree times its length. Then the
	resistance will now be			_
	A) 6.67Ω	B) 60 Ω	C) 120Ω	D) 180 Ω
29.	The resistance of a ser	mi-conductors	,	•
	A) increases with incre	ase of temperature	B) decreases with	h increase of temperature
		h charge of temperature		-
	D) first decreases and t	hen increases with incre	ease of temperature	
30.				qual to 10 cm and the walls are
	5 mm thick. If specific	c resistance of copper i	s 1.7×10^{-8} ohm \times 1	metre. Calculate the resistance
	of the tube.	11		
	A) $5.77 \times 10^{5} \Omega$	B) 5.77×10^{-5} O	C) 5.77×10^{-7} O	D) $5.77 \times 10^7 \Omega$
31.	<i>'</i>	*	,	5 m and uniform cross-section
J1.				resistivity of the material is
22	· ·	· · · · · · · · · · · · · · · · · · ·	*	m D) $0.9 \times 10^{-6} \Omega - m$
32.		_	12. It is stretched u	niformly to a length of 40 cm.
	The resistance now be		C) 20 C	D) 200 O
22	Α) 5 Ω	B) 10Ω	C) 20 Ω	D) 200 Ω
33.				rry currents in the ratio 4:1.
		cities of electrons in th		D) 4.1
24	A) 1:16	B) 16:1	C) 1:4	D) 4:1
34.	and T ₂ . Which is corr		ed against voltage a	t two different temperatures T
	and 12. Which is corr	,		
		Current	Γ_2	
			→	
		Voltage		
	A) $T_1 > T_2$	B) $T_1 < T_2$	C) $T_1 = T_2$	D) None
35.		, 1 <u>2</u>	. 1 2	voltage of 12.5 Volts. The
		the storage battery is 1		rging current is 0.5A, the emf
	A) 13 Volts	B) 12.5 Volts	C) 12 Volts	D) 11.5 Volts
36.		across a battery of emi	,	_,
•	A) 0	B) > E	C) <e< td=""><td>D) All of above</td></e<>	D) All of above
37.	*	,	,	es of equal length. These pieces
•		llel. The effective resis		
	A) R/100	B) R/10	C) 10 R	D) 100 R
	,	,	- /	,

38.	In the diagram resistance terminals A and B is	e between any two ju	nctions is R. Equivalent	resistance across
		A B		
	A) $\frac{11R}{7}$	B) $\frac{18R}{11}$	C) $\frac{7R}{11}$	D) $\frac{11R}{18}$
39.	Power generated across a equal parts and all the pa generated in the wire is	a uniform wire conne arts are connected in	ected across a supply is I parallel across the same	H. If the wire is cut into n e supply, the total power
	A) $\frac{H}{n^2}$	B) n^2H	C) nH	D) $\frac{H}{n}$
40.	A) increase by about 9% C) increase by about 19%	ent of a heater is redu	B) increase by about 11 D) decrease by about 10	%
41.	If the current in a electri			s by
42.	A) 1% The ratio of powers dissi	B) 2% pated respectively in	,	D) 16%
		R		
			- ₩₩ • 3R	
43.	A) 9 The electric current in a A) electron only	B) 27/4 discharge tube conta	C) 4/9 ining a gas is due to B) positive ions only	D) 4/27
44.	C) negative ion and positive A metallic block has no pelectron is		C) electrons and positive pplied across it. Then the	
	A) proportional to T		B) proportional to \sqrt{T}	
45.	C) Zero In order to increase the r	esistance of a given v	D) finite but independent wire of uniform cross see	<u> </u>
	value, a fraction of its ler	<u> </u>		
	times the original length w			2
	A) $\frac{1}{4}$	B) $\frac{1}{8}$	C) $\frac{1}{16}$	D) $\frac{1}{6}$
	4	8	16	6
		<u>SECTION</u> (Numerical Value		
co	his section contains 5 quest emprising of positive or no farking scheme: +4 for co	stions. The answer to	o each question is a Nun bers.	nerical values
46.	How many electrons per se	econd pass through a s	section of wire carrying a	current of 0.7 A
47.	×10 ⁸ . A current of 3.6 A flows the through the headlight in 3.	-	=	llombs of charge flow

48.	A current of 7.5A is mair			
49.			In this time. How many	y electrons flow through the
50	wire ×10 ²¹		1 1 1 20 10-4	/ 3371 / 1 1 1 1 1
50.	When a wire carries a cur			n/s. What is the drift
	velocity when the current			
	(0)	SECTION SECTION		
		INGLE CORRECT		
	his section contains 20 mu		*	<u>*</u>
	C) and (D) for its answer, (
	larking scheme: +4 for co	orrect answer, u ii not	t attempted and -1 if	not correct.
		CHEMI	<u>STRY</u>	
Sylla	abus: SOLID STATES (1	0-07-2020 TO 24-07-2	020).	
51.	The correct relation bet	ween angles of the edg	ge of acrystal belongir	ng to a cubic system is
	A) $\alpha = \beta = \gamma = 90^{\circ}$	B) $\alpha = \beta = \gamma \neq 90^{\circ}$	C) $\alpha = \beta = 90^{\circ}; \gamma = 1$	$20^{0} \text{ D) } \alpha \neq \beta \neq \gamma \neq 90^{0}$
52.	The name given to ABC	CABCABCtype	e of arrangement is	
	A) cubic close – packed a	arrangement	B) hexagonal close –	packed arrangement
	C) tetrahedral arrangement	nt	D) None of these	
53.	Due to Frenkel defect, t		C) 1, -1 1	D) deserved deserve
54.	A) increases Non stoichiometric solid	B) decreases	C) halved	D) does not change
34.	A) MgO	B) CaO	C) Na ₂ O	D) TiO
55.	, 0	,	, =	ers of the unit cell, O atoms
				e formula of the compound
	A) $Na_2 WO_3$	B) NaWO ₃	C) $Na_2W_2O_4$	D) Na_2WO_6
56.	A metal has a body – ce	ntred cubic lattice and	d the length of the uni	it cell is 3A. If the density is
	10 gm/cc. Caliculate its	S		
	A) 27	B) 81	C) 40.5	D) 162
57.	The number of unit cell	_	•	24
=0	A) 6×10^{20}	B) 3×10^{22}	*	D) 0.5×10^{24}
58.	<u>-</u>	e containing 'n' part	icles, the number of	tetrahedral and octahedral
	voids respectively A) n, 2n	B) n, n	C) 2n, n	D) 2n, 2n
59.	The 8:8 type of packing		C) 211, 11	D) 211, 211
	A) NaCl	B) <i>KCl</i>	C) CsCl	D) MgF_2
60.	The packing fraction in	a simple cubic cell of	crystals is:	- 2
	-	$\sqrt{3}$	1	D) $\frac{\sqrt{2}}{6}\pi$
	A) $\frac{\pi}{6}$	B) $\frac{\sqrt{3}}{8}\pi$	C) $\frac{\pi}{2\sqrt{2}}$	D) $\frac{4}{6}\pi$
61.	A body centred cubic		- • -	B. Atom of A occupy two
	•	_		pied by the atoms of B, the
	formula of the compour		·	,
	A) AB_2	B) AB_3	C) AB ₇	D) A_3B_2
62.	The concentration of ca	tion vacancies when N	TaCl is doped with 10	
	A) 6.023×10^{20}	B) 6.023×10^{23}	C) 6.023×10^{21}	D) 6.023×10^{18}
63.	_	compounds is likely t	to show both Frenkel	and Schottky defects in its
	crystalline form?	D) <i>VD</i> ,,	$C)$ $A \circ D_{rr}$	$D)/Z_nC$
	A) CsCl	B) <i>KBr</i>	C) AgBr	D) ZnS

64.	CsCl crystallizes in body centred cubic lattice. If 'a' is its edge length then which of the following expressions is correct?												
	A) $r_{c_s^+} + r_{cl^-} = 3a$	B) $r_{c_s^+} + r_{cl^-} = \frac{3a}{2}$	C) $r_{c_s^+} + r_{cl^-} = \frac{\sqrt{3}}{2}a$	D) $r_{c_s^+} + r_{cl^-} = \sqrt{3}a$									
65.	Which of the followin A) Iodine	g exists as covalent crys B) Silicon	stals in solid state? C) Sulphur	D) Phosphorus									
66.		-	Body centred cubic (be	cc) and cubic close packing									
	(ccp) lattices follow th		C) $sc < ccp < bcc$	D) so < box < con									
	· •			D) sc < occ < ccp									
67.	The $\frac{r}{r^-}$ ratio of KF is	0.98. The type of struc	ture in KF is										
	A) NaCl	B) ZnS	C) graphite	D) CsCl									
68.	Frenkel defect arise d	ue to											
	A) displacement of a ca	ation to interstitial position	on										
	B) the absence of a neg	gative ion from the lattice	point										
	C) the presence of an e	xtra positive ion in the la	ttice site										
	D) The absence of a pa	ir of cation and anion fro	m the lattice site										
69.		hest melting point is exl	<u> </u>										
	A) covalent solids	B) Ionic solids	C) Pseudo solids	D) Molecular solids									
70.		owing statements is not											
		onic solids does not chang											
		s the percentage of total											
	C) In body centered cubic unitcell, the relationship between atomic radius (r) and the edge length												
	(a) is, $r = \frac{\sqrt{3}}{4}a$												
	D) Photovoltaic cell is	used for conversion of lig	ght energy into electrica	al energy									
		SECTI	ON-II										
		(Numerical Valu	e Answer Type)										
T	his section contains 5 o	uestions. The answer t		umerical values									
	-	r negative decimal num	_	unicited values									
M	larking scheme: +4 for	correct answer, 0 in al	l other cases.										
		·											
71.	Potassium crystallizes	in a bcc lattice, hence the	coordination number o	f potassium in potassium									
	metal is												
72.				the density of the metal is									
	2.7 g cm ⁻³ , the molar m	ass of Al atom is	g mol ⁻¹ .										
73.	Copper crystallizes in a A^0 .	a f.c.c. lattice, the length	of the unit cell is 3.63A	⁰ . The radius of Cu – atom is									
74.	Sodium metal crystalliz of the Na-atom will be		ic lattice with the cell e	dge, 'a'= 4.29 A 0 . The radius									
75.	A substance forms f.c.o	c. crystal structure. Its de	nsity is 1.984 gm cm ⁻³ a	and the length of the edge of									
•		Calculate the molar mas		5									
	r		_										

S

SRIGAYATRI EDUCATIONAL INSTITUTIONS

INDIA

INCOMING SR MPC

Time: 3 Hours

JEE MAINS MODEL WT-09

Date: 26-07-2020 Max. Marks: 300 M

KEY SHEET MATHEMATICS

1)	С	2)	В	3)	В	4)	D	5)	В	6)	С	7)	В	8)	В	9)	C	10)	С
11)	A	12)	A	13)	D	14)	C	15)	A	16)	A	17)	A	18)	C	19)	В	20)	C
21)	150	22)	192	23)	1	24)	5	25)	-16										

PHYSICS

26)	С	27)	С	28)	D	29)	В	30)	В	31)	В	32)	С	33)	В	34)	В	35)	С
36)	D	37)	A	38)	D	39)	В	40)	В	41)	C	42)	D	43)	D	44)	C	45)	В
46)	4.37	47)	38.88	48)	337.5	49)	2.1	50)	6.00										

CHEMISTRY

51) A	A	52)	A	53)	D	54)	D	55)	В	56)	В	57)	С	58)	С	59)	С	60)	A
61) (С	62)	D	63)	С	64)	С	65)	В	66)	D	67)	D	68)	A	69)	A	70)	A
71) 8	8	72)	26.80	73)	1.28	74)	1.85	75)	75.01										

HINTS & SOLUTIONS

1.
$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{462}{330} \Rightarrow 5n = 12r - 5 \dots (1)$$

$${}^{n}C_{r} = {}^{n}C_{r+1} \Longrightarrow n = 2r+1\dots(2)$$

Solving (1) and (2), r = 5

2. A committee of 12 members is to be formed when coomen are in majority.

Case-1: 9 women and 3 men

:. Number of ways

$$= {}^{9}C_{9} \times {}^{8}C_{3} = 1 \times \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56$$

Case - II: 8 women and 4 men

 \therefore Number of ways = ${}^9C_8 \times {}^8C_4 = 630$

Case – III: 7 women and 5 men

 \therefore Number of ways = ${}^9C_7 \times {}^8C_5 = 2016$

:. Required number of ways

=56+630+2016=2702

3.
$$T_{m+1} - T_m = 15$$

$$m = {}^{1}C_3 - {}^{m}C_3 = 15$$

$$\frac{(m+1)m(m-1)}{6} - \frac{n(m-1)(m-2)}{6} = 15$$

$$m(m-1)(3) = 15 \times 6$$

$$m(m-1) = 6 \times 5, m = 6$$

4.
$$\frac{15!}{3!4!8!} = \frac{15!}{12!3!} \frac{12!}{4!8!} \frac{8!}{8!(8-8)!}$$
$$= {}^{15}C_3.{}^{12}C_4.{}^8C_3$$

5.
$${}^{10}C_5(5-1)! {}^5C_5(5-1)!$$

6. Let
$$n(A) = a, n(B) = b$$

The no. of many to one functions from A to B is $b^a - p_a = 4^3 - p_a = 64 - 24 = 40$

7.
$$768 = 8 \times 96 = 2^8 \times 3^1 = \text{Number of divisors} = (a_1 + 1)$$

 $(a_2 + 1) \dots (a_k + 1) = 9 \times 2 = 18$

8.
$${}^{4}C_{1}.\frac{5!}{2!}$$

(Select one subject, repeat it two times in 5 periods)

9. i) All are diff
$$= 5! = 110$$

ii) 2 are same & 3 are diff =
$$\frac{{}^{4}C_{3} \times 5!}{2} = 240$$

iii) 3 are same & 2 are diff =
$$\frac{{}^{4}C_{2} \times 5!}{3} = 120$$

Total
$$= 480$$

10.
$$ax^2 + bx + c$$

$$3\times4\times4=48$$

$$3^5 - {}^3C_1 \times (3-1)^5 + {}^3C_2 (3-2)^5 = 243 - 96 + 3 = 150$$

PHYSICS

- 26. Given that $v_a = v_i v_a = ?$
 - We know that
 - $I = neAv_d$

$$\Rightarrow V_e \propto \frac{1}{A} \propto \frac{1}{\underline{\pi d}^2} \propto \frac{1}{d^2}$$

$$\frac{V_{d_1}}{V_{d_2}} = \frac{(d/2)^2}{d^2} = \frac{1}{4}$$

- $V_{d_2} 4V$.
- 27. $j = \frac{i}{A}$ current density inversely proportional to area of cross section.
- 28. During stretching volume is constant

$$Al = A'(3l)$$

$$\Rightarrow A' = \frac{A}{3}$$

$$\frac{R'}{R} = \frac{\rho 3l}{A' \frac{\rho l}{A}}, \ R' = \frac{3A}{A'} \times R$$

Put A' and R from above

$$R' = R_{new} = 9R = 180\Omega$$

- 29. $R \downarrow$ (Resistance decreases which increase of temperature)
- 30. Given that I=5m, d=10cm, =0.1m,

$$R = \frac{\rho^{1}}{A} = \frac{17 \times 10^{-8} \times 5}{\frac{\pi \times 0.095^{2}}{4}} = 5.7 \times 10^{-5} \Omega$$

31. Given that I = 15m, $A = 6.0 \times 10^{-7} m^2$.

$$R = 5\Omega, \rho = ?$$

$$\rho = \frac{RA}{I} = \frac{5 \times 6 \times 10^{-7}}{15} = 0.2 \times 10^{-6} \Omega m$$

32. Given that $I_1 = 20cm$, $R_1 = 5\Omega$,

$$I_2 = 40 \text{ cm}, R_2 = ?$$

During stretching volume of wire is constant

$$20A = 40A' \Longrightarrow A' = A/2$$

We know that
$$R = \frac{\rho I}{A}$$

$$\frac{R_2}{R_1} = \frac{I_2}{I_1} \times \frac{A}{A'} = \frac{40}{20} \times \frac{A}{\frac{A}{2}}$$

$$R_2 = 20\Omega$$

33. We no that $I = neAv_d$

$$V_d = \frac{I}{neA} \propto \frac{I}{r^2}$$

$$\frac{V_{d_1}}{V_{d_2}} = \left(\frac{I_1}{I_2}\right) \left(\frac{r_2}{r_1}\right)^2 = \left(\frac{4}{1}\right) \left(\frac{2}{1}\right)^2 = 16$$

34.
$$R = \frac{V}{I} \Rightarrow \frac{I}{V} = \frac{1}{R}$$

$$\tan \theta = 1/R = W + \theta$$

$$\therefore \theta_1 > \theta_2$$

$$\Rightarrow R_1 < R_2 \qquad \Rightarrow T_1 < T_2$$

$$\therefore T \uparrow R \uparrow$$

35.
$$E + ir = 12.5 \text{ volt}$$

 $E + (0.5 \times 1) = 12.5$
 $E = 12 \text{ volt}$

36.
$$E-ir = 0$$

 $E-ir = V$ (Discharging)
 $E+ir = V$ (Charging)

37.
$$\frac{1}{R_{eq}} = \frac{10}{R} + \frac{10}{R} + \dots 10 \text{ times}$$
$$R_{eq} - R/100$$

38. Req. =
$$\frac{11R}{18}$$

39.

Initially
$$H = \frac{v^2}{R}$$

Now after cutting

Power in one branch = $\frac{V^2}{R/n} = \frac{nV^2}{R}$

Total power = $\frac{nV^2}{R} + \frac{nV^2}{R} + \dots = \frac{n^2V^2}{R}$.

40.
$$P = \frac{V^{2}}{R} \quad R = \frac{\rho l}{A}$$

$$P' = \frac{V^{2}}{0.9R} \quad R' = \frac{\rho (l - 0.1l)}{A}$$

$$P' = \frac{1.11V^{2}}{R}, R' = 0.9 \frac{\rho l}{A}$$

$$R' = \frac{0.9 \rho l}{A}$$

$$P' = \left(1 + \frac{11}{100}\right)P$$

P'increase by 11 %.

41.
$$I_L = 98I$$

$$P_L\% \downarrow = \frac{I^2R - (0.981)^2R}{I^2R} = 4\%$$

42.

$$P_1 = \frac{V^2}{R} = I^2 R = \frac{4I^2 R}{9}$$

$$P_2 = I^2 \times 3R$$

$$\frac{P_1}{P_2} = \frac{4}{27}.$$

- 43. Conceptual
- 44. Due to random motion

O e;
$$V_{mean} = 0$$

45. Conceptual

CHEMISTRY

55. Number of 'W' atoms =
$$8 \times \frac{1}{8} = 1$$

Number of 'O' atoms =
$$12 \times \frac{1}{4} = 3$$

Number of 'Na' atoms
$$= 1$$

Na: W:
$$O = 1: 1: 3$$

Formula of compound is NaWO₃

56.
$$d = \frac{ZM}{a^3 \times N}$$

$$M = \frac{d \times a^3 \times N}{Z}$$

$$M = \frac{10 \times (3 \times 10^{-8})^3 \times 6.023 \times 10^{23}}{2}$$

$$M = 81.31$$

57. 234 gm
$$NaCl \rightarrow 6 \times 10^{23}$$
 unit cells 58.5 gm $NaCl \rightarrow$?

$$=\frac{6\times10^{23}\times58.5}{234}$$

$$=1.5\times10^{23}$$

61. Number of 'A' atoms =
$$2 \times \frac{1}{8} = \frac{1}{4}$$

Number of 'B' atoms =
$$6 \times \frac{1}{8} + 1 = \frac{14}{8}$$

$$A: B = \frac{1}{4}: \frac{14}{8} = \frac{1}{4}: \frac{7}{4} = 1:7$$

Formula of the compound is : AB_7

$$= \frac{10^{-3}}{100} \times 6.023 \times 10^{23}$$
$$= 10^{-5} \times 6.023 \times 10^{23}$$
$$= 6.023 \times 10^{18}$$

73.
$$4r = a\sqrt{2}$$

$$r = \frac{a\sqrt{2}}{4}$$

$$r = \frac{3.63 \times 1.414}{4}$$

$$r = 1.283205$$
.

74.
$$4r = \sqrt{3}a$$

 $r = \frac{\sqrt{3}a}{4} = \frac{1.732 \times 4.29}{4}$
 $r = \frac{7.4302}{4} = 1.857$

75.
$$d = \frac{ZM}{a^3 \times N}.$$