SRIGAYATRI EDUCATIONAL INSTITUTIONS INDIA

IONIC EQUILIBRIUM UT-03

1.	Which of the following order regarding basic strength of the given Bronsted bases in aqueous medium is correct												
	3) $HCO_3^- > NO_2^- > CH_3C$	COO^-	4) <i>HCO</i> ₂	4) $HCO_3^- > CH_3COO^- > NO_2^-$									
2.	The Conjugate base of		, ,	3	2								
	1) HN_{3}^{-}	2) N_2^-	3) N_3^-		4) N^{3-}								
3.	Which of the following sets contains Lewis acid only?												
	1) BF_3 , Ni^{2+} , $SnCl_4$		•	NH_3, H_2O	4) BF_3 , SO_3 , $BeCl_2$								
4.	The ionization constant			3 2	5 5 2								
	1) $1.8 \times 10^{-15} M$			$10^{-14} M$	4) $1.0 \times 10^{-16} M$								
5.	Which of the following				,								
	1) 0.1 M HCl		2) 0.1 M	2) $0.1 \text{ M } H_2SO_4$									
	3) 0.1 M <i>CH</i> ₃ <i>COOH</i>		4) 0.1 M	in each of HC	I and H_2SO_4								
6.	Given 0.1 M oxalic acid $(K_{a_1} = 5.9 \times 10^{-2} M \text{ and } K_{a_2} = 6.4 \times 10^{-5} M)$ Solution. The concentration												
	of oxalate anion in the solution will be												
	1) $5.9 \times 10^{-2} M$		M 3) 6.4×1	$0^{-4}M$	4) $6.4 \times 10^{-5} M$								
7.	The ionization constant of acctic acid is 1.8×10^5 M at 25^0 C the value of K_b of acetate ions												
	will be												
	1) $5.56 \times 10^{-8} M$	2) 5.56×10 ⁻⁹	<i>M</i> 3) 5.56×	$10^{-10} M$	4) $1.8 \times 10^{-9} M$								
8.	If $K_{a1}(H_2CO_3) = 4.5 \times 10^{-7}$ M and $K_a(HCO_3^-) = 5.0 \times 10^{-11} M$, the pH of 0.1 M Na_2CO_3												
	Solution at $25^{\circ}C$ be												
	1) 8.2	2) 9.4	3) 10.5		4) 11.7								
9.	The pH 0.1 M NaA is 3	,	,	4 at 25° is	,								
	1) $1.0 \times 10^{-7} M$				4) $1.0 \times 10^{-10} M$								
10.	The buffer capacity of a buffer having 0.1 M acetic acid and 0.05 M sodium acetate is												
	1) 0.0333 M	2) 0.0768 M	3) 0.1152		4) 0.2304 M								
11.	The addition of small amount of acid or base to a buffer solution												
	 does not affect its pH value does not affect its buffer capacity 												
	3) does not affect its buffer range												
	4) does affect the total a	_	base) and its con	jugate base (o	r acid) in the solution								
 2. 3. 4. 5. 8. 10. 11. 12. 13. 14. 	The solubility of Ca_3												
	1) $2.56 \times 10^{-14} M^5$												
13.	The minimum pH at which $Mg(OH)_2$ is precipitated from 0.1 M Mg $(NO_3)_2$ solution (given												
	: $K_5 (Mg (OH)_2) = (9 \times 10^{-15} M^3)$												
	1) 7.5	2)8.5	3) 9.2		4) 9.5								
14.	The solubility of silver			ion is 1.1×10 ⁻	<i>'</i>								
	product of silver oxalat				·								

1) $1.1 \times 10^{-9} M^3$ 2) $1.8 \times 10^{-9} M^3$ 3) $2.25 \times 10^{-10} M^3$ 4) $1.1 \times 10^{-11} M^3$

15.	Which of the of the following statements 1) The solubility of PbS in water as computed the computation of the following statements.		affected if the									
	hydrolysis of Pb^{2+} and S^{2-} are also conside											
	2) The solubility of a sparingly soluble salt	in water decreases if some comm	non ion is present in									
	water											
	3) The solubility product of a salt is dependant on temperature											
1.0	4) The solubility of $Zn(OH)_2$ in water is defined as	ependant on the pH of the solution	1									
16.	The pH of a solution defined as	2) II 1 ([II+], II-	3)									
	1) pH = - In $\left(\left[H^+ \right] / moldm^{-3} \right)$	2) pH = $-\log \left(\left[H^+ \right] / mol dm^- \right)$	/									
	3) pH = $-\log\left(mol dm^{-3} / \left[H^{+}\right]\right)$	4) pH = - In $\left(mol dm^{-3} / \left[H^+ \right] \right)$])									
17.	Which of the following shows the highest	percentage dissociation ?										
	1) $1.0M\ HCN\left(K_{diss}^0 = 4.0 \times 10^{-10}\right)$	2) 0.1 M HCN										
	3) $1.0M\ HNO_2\left(K_{diss}^0 = 4.5 \times 10^{-4}\right)$	4) 0.1 M <i>HNO</i> ₂										
18.	A solution of NaCl is											
	1) acidic in nature											
	2) alkaline in nature											
	•	3) neutral in nature4) acidic at low temperature, neutral at room temperature and alkaline at high temperature										
19.	The pH 0.1 M Solution of the following salts increases in the order											
	$1) NaCl < NH_4Cl < NaCN < HCl$	$2) HCl < NH_4Cl < NaCl < N$	<i>NaCN</i>									
	3) $NaCN < NH_4Cl < NaCl < HCl$	4) <i>HCl</i> < <i>NaCl</i> < <i>NaCN</i> <	NH_4Cl									
20.	The solubility product of calcium phosph	г элг эл										
	$1) K_{sp} = \left[Ca^{2+} \right] \left[PO_4^{3-} \right]$	$2) K_{sp} = \frac{\left[Ca^{2+}\right]\left[PO_4^{3-}\right]}{\left[Ca_3\left(PO_4\right)_2\right]}$										
	3) $K_{sp} = \left[Ca^{2+} \right]^3 \left[PO_4^{3-} \right]^2$	4) $K_{sp} = \left[Ca^{2+} \right]^2 \left[PO_4^{3-} \right]^3$										
	³ P L J L [¬] J	* L J L ' J										
28.	For the reaction $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3}$	$_{(g)}$, $\Delta H = -93.6 k J mol^{-1}$ which of t	he following is not									
	true? 1) The pressure changes at constant tempera? 2) The volume changes at constant tempera? 3) The formation of NH ₃ is decreased at hig 4) The formation of NH ₃ is increased at hig	ture do not affect the equilibrium of the her temperature										
21.	In the reaction $HCN + H_2 0 \rightleftharpoons H_3 O^+ + CN$	√, the conjugate acid – base pai	ir is									
	1) HCN, H_2O	2) H_3O^+, CN^-										
	3) $HCN, H_3O^+,$	4) HCN, <i>CN</i>										
22.	The strongest base amongst OH^-, F^-, NH	H_2^- and CH_3^- is										
	1) NH_2^- 2) CH_3^-	3) F^{-} 4)	OH^-									
23.	The first and second standard dissociation	n of an acid H_2A are 1.0×10^{-5} a	and 5.0×10^{-10}									
	respectively, overall standard dissociation		1.5									
		,	0.2×10^{15}									
24.	In aqueous solution the ionization consta											
	$K_2^0 = 4.8 \times 10^{-11}$ select correct statement for		the carbonic acid									
	1) The Concentration of H^+ is double that											
	2) The Concentration of CO_3^{2-} is 0.034 M											
	3) The Concentration of CO_3^{2-} is greater than that of HCO_3^-											

- 4) the concentrations of H^+ and HCO_3^- are approximately equal
- The pH of a 0.1 molar solution of the acid HQ is 3. The value of the ionization constant k_a of 25. this acid is
 - $3 \times 10^{-1} M$ 1)
- 2) $1 \times 10^{-3} M$
- 3) $1 \times 10^{-5} M$
- 4) $1 \times 10^{-7} M$
- Among the following oxoacids, the correct order of acid strength is **26.**
 - $HClO_2 > HClO_4 > HClO_3 > HOCl$
- 2) $HOCl > HClO_2 > HClO_3 > HClO_4$
- $HClO_4 > HOCl > HClO_2 > HClO_3$
 - 4) $HClO_4 > HClO_3 > HClO_2 > HClO$
- Zirconium phosphate $\left\lceil Zr_3\left(PO_4\right)_4\right\rceil$ dissociates into three zirconium cations of charge+4 and **27.** four phosphate anions of charge -3. If molar solubility of zirconium phosphate is denoted by s and the solubility product by K_{sp} which of the following relationship between s and is Correct

 - 1) $s = k_{sp} / (6912)^{1/7}$ 2) $s = (k_{sp} / 144)^{1/7}$ 3) $s = (k_{sp} / 6912)^{1/7}$ 4) $s = (k_{sp} / 6912)^{1/7}$

INTEGER TYPE QUESTIONS

- 28. How much water must be added to 300 mL of 0.2 M solution of CH₃COOH(K)_a=1.8×10⁻⁵ for the degree of dissociation of the acid to double?
- K_{sp} of $Mg(OH)_2$ is 4×10^{-12} the no.of moles of Mg^{2+} ions in one litre of its saturated solution in 29) 0.1 M NaOH is?
- The pH of a saturated aqueous solution of CO_2 is 5; For H_2CO_3 , $Ka_1=10^{-7}$ and $Ka_2=10^{-11}$. At the given pressure the solubility of CO_2 in water is $10^{-2}(M)$. What is the value of -log $[CO_3^{\ 2^{-2}}]$ in **30**) the nearest possible integers?

KEY

1	4	2	3	3	1	4	2	5	3	6	4	7	3	8	4	9	3	10	2
11	3	12	3	13	1	14	2	15	1	16	2	17	4	18	3	19	2	20	3
21	4	22	2	23	3	24	4	25	3	26	4	27	3	28	900	29	2	30	7

HINTS & SOLUTIONS

- 1. The order of the conjugate acids is $HNO_2 > CH_3COOH > H_2CO_3$. The base strength follows the reverse order i.e $HCO_3^- > CH_3COO^- > NO_2^-$
- 2. The hydrzoic acid is N_3H its conjugate base is N_3^-
- 3. This species BF₃, Ni²⁺ & SnCl⁴, can accept lone pair of electrons

4.
$$K_c = \frac{\left[H_3 O^+\right] \left[O H\right]}{\left[H_2 O\right]^2} = \frac{\left(10^{-7} M\right)^2}{55.56 M} = 1.80 \times 10^{16} M$$

- 5. 0.1 M CH_3COOH will have minimum $[H_3O^+]$ and hence its pH will be maximum
- 6. In diprotic acid H_2A , $A^{2-} = K_{a2}$
- 7. $K_b = K_w / K_a = 1.0 \times 10^{-14} M^2 / 1.8 \times 10^{-5} M = 5.56 \times 10^{-10} M$
- 8. $CO_3^{2-} + H_2O \rightleftharpoons HCO_3^- + OH^-;$

$$pH = \frac{1}{2} \left[pK_w^0 + pK_a^0 \left(HCO_3^- \right) + \log \left(c / \left(M \right) \right) \right] = \frac{1}{2} \left[14 - \log \left(5 \times 10^{-11} \right) + \log \left(0.1 \right) \right] = \frac{1}{2} \left[14 + 10.30 - 1 \right] = 11.65$$

9. pH = 3.0 implies
$$[H^+] = 10^{-3} M$$
 also $[H^+] = \sqrt{\{K_b(A^-)\}c}$ or $K_b(A^-) = [H^+]^{2/c}$
That is $K_b(A^-) = (10^{-3} M)^2 / (0.1 M) = 10^{-5} M$
Finally $K_a(HA) = K_w / K_b(A^-) = (10^{-14} M^2) / (10^{-5} M) = 10^{-9} M$

10. By definition, buffer capacity of an acidic buffer is

$$\frac{\partial b}{\partial (pH)} = 2.303 \left[\frac{b(a-b)}{a} \right]$$

Where a = [acid] + [salt] and b = [salt]. Hence

$$\frac{\partial b}{\partial (pH)} = 2.303 \left[\frac{(0.05M)(15M - 0.05M)}{(0.15M)} \right] = 0.0768M$$

11. The addition of small amount of acid or base does not change the total amount of acid (or base) and conjugate The pH value and buffer capacity change after the addition of acid or base.

12.
$$Ca_3(PO_4)_2 \rightleftharpoons 3Ca^{2+} + 2PO_4^3$$
(2s)

$$K_s = \left[Ca^{2+}\right]^3 \left[PO_4^{3-}\right] = \left(3s\right)^3 \left(2s\right)^2 = 108s^5 = \left(108\right) \left(1.6 \times 10^{-7} M\right)^5 = 1.13 \times 10^{-32} M^5$$

13.
$$K_s (Mg(OH_2)) = [Mg^{2+}][OH^-]^2 Hence [OH^-] = (\frac{K_s}{[Mg^{2+}]}) = (\frac{9 \times 10^{-15}}{0.1M}) = 3.0 \times 10^{-7} M$$

$$pOH = -\log(3.0 \times 10^{-7}) = 6.52 \text{ pH} = 14 - 6.52 = 7.48$$

14.
$$K_s = \lceil Ag^+ \rceil^2 \lceil Ox^{2-} \rceil = (0.1M)^2 (1.1 \times 10^{-9} M) = 1.1 \times 10^{-11} M^3$$

- 15. The solubility of PbS is increased if the hydrolysis of Pb^{2+} and S^{2-} ions are also considered. The solubility of $Zn(OH)_2$ is pH dependent due to the reaction between OH^- from $Zn(OH)_2$ and H^+ ions (i.e pH) present in the solution
- 16. Conceptual
- 17. Ostwald dilution law; more dilute the solution, more the dissociation
- 18. Solution in neutral because no hydrolysis of Na^+ and Cl^- take place.
- 19. HCl is the strongest acid. Its pH will be minimum NaCl does not hydrolyze in solution its pH = 7 NH_4^+ in NH_4Cl on hydrolysis produces H^+ Hence, its pH will be slightly less than 7 CN^- in NaCN on hydrolysis produces OH^- . Hence, its pH will be slightly greater than 7
- 20. Conceptual
- 21. Conceptual
- 22. The weakest acid amongst H_2O , HF, NH_3 and CH_4 is CH_4 the strongest base will be CH_3^-
- 23. The overall standard dissociation constant of the acid is

$$K_a^0 = K_{a1}^0 K_{a2}^0 = (1.0 \times 10^{-5})(5.0 \times 10^{-10}) = 5.0 \times 10^{-15}$$

24. Carbonic acid ionizes as

$$i)H_2CO_3 \rightleftharpoons H^+ + HCO_3^- \qquad K_1^0 = 4.2 \times 10^7$$

$$ii)HCO_3^- \rightleftharpoons H^+ + CO_3^{2-} \qquad K_1^0 = 4.8 \times 10^{11}$$

25. For a weak acid, we have

$$HQ \rightleftharpoons H^+ + Q^-; \quad K_a = \frac{\left[H^+\right]\left[Q^-\right]}{\left[HQ\right]}$$

26. The larger the number of oxygen atoms attached to chlorine, greater the electron pull towards oxygen, hence, more easy to remove hydrogen from the acid. The given acids are

$$\begin{array}{ccc} Cl-OH & OCl-OH & O_2Cl-OHl; & O_3Cl-OH \\ {}^{(HClO_2)} & {}^{(HClO_3)} & {}^{HClO_4} \end{array}$$

27)
$$Zr_3(PO_4) \rightleftharpoons 3Zr^{4+} + 4PO_4^3$$

$$K_{sp} = \left[Zr^{4+}\right]^3 \left[PO_4^{3-}\right] = \left(3s\right)^3 \left(4s\right)^4 = 6912s^7$$

Hence
$$s = (K_{sp} / 6912)^{1/7}$$

28) As we know
$$C\alpha^2 = K_a$$
; $\alpha = \sqrt{K_a/C}$

According to the given condition, $\alpha_2 / \alpha_1 = 2 = \sqrt{C_1 / C_2}$; $C_2 = 0.2 / 4$

Again,
$$M_1V_1 = M_2V_2$$

$$V_2 = 300 \times 0.2 \times 4 / 0.2 = 1200 \text{ ml}$$

So, 900(=1200-300) mL of water should be added

29)
$$Ksp=[Mg^{2+}][OH^{-}]2$$

Let the concentration of Mg^{2+} ions to form saturated solution be s mol/litre

$$4 \times 10^{-12} = 5 \times (0.1)2$$

$$s=4 \times 10^{-10} \text{mol} / \text{litre}$$

Volume of solution =1 litre

Number of moles of Mg²⁺= Molarity x Volume= $4 \times 10^{-10} \times 1 = 4 \times 10^{-10}$ mol

30)
$$HCO_3^- \longrightarrow H^+ + CO_3^{-2}$$

$$\frac{\left[CO_3^{-2}\right]\left[H^+\right]}{\left\lceil HCO_3^-\right\rceil} = 10^{-11}$$

$$10^{-11} \times 10^{-4}$$

$$x^2 = 10^{-15}$$

$$x = 10^{-7} = CO_3^{-2}$$

$$\log\left[10^{-7}\right] = 7$$